XVet 28 Manual de Usuario

Rayos X Portátil Veterinario

CONTENIDO

1.	ANUNCIO DE LA OPERACIÓN SEGURA	-3
2.	SEGURIDAD RADIOLÓGICA	4
3.	ENTORNO DE TRABAJO5	
4.	CONFIGURACIÓN DEL SISTEMA6	1
5.	MODO DE FUNCIONAMIENTO	8
6.	ESPECIFICACIONES	·10
7.	DIMENSIÓN11	
8.	TABLA TÉCNICA PARA PEQUEÑOS ANIMALES1	2
9.	HISTORIA CLÍNICA EQUINA1	3

TABLAS

1.	TABLA 1.2.3 ESPECIFICACIONES	10
2.	TABLA 4. GRÁFICO PARA PEQUEÑOS ANIMALES1	2
3.	TABLA 5. GRÁFICO EQUINA	-13
4.	TABLA 6. GRÁFICO EQUINA	-14

Esta guía del usuario se ha diseñado para garantizar el correcto uso y funcionamiento del XVet 28. Por favor, lea todas las líneas a fondo antes de utilizar este equipo.

El uso incorrecto y el funcionamiento excediendo las condiciones descritas en este manual pueden ocasionar daños de la máquina y acortar su vida útil. Se debe prestar especial atención a todas las advertencias, precauciones y notas incluidas en el presente documento.

Este equipo debe ser utilizado solamente por las personas legalmente calificadas y profesionales.

El XVet 28 está diseñado con la debida consideración a los usuarios, su la seguridad y la fiabilidad del producto. Sin embargo, se recomienda seguir las normas que se mencionan para mantener su seguridad adicional y la salud.

- 1. Este producto debe ser operado solamente por o bajo la supervisión de personas con formación profecional.
- 2. XVet 28 está diseñado para los usos radiológicos y no para fluoroscopia o en otras aplicaciones asociadas.
- 3. XVet 28 debe utilizarse para el diagnóstico, no para la terapia.
- 4. XVet 28 se especifica como equipo Clase I tipo B bajo la norma estándar IEC 60601-1,2,3, IEC 60601-2-7,28.
- 5. No modifique el equipo a su discreción y en caso de que cualquier modificación se requiere inevitablemente, pedir la ayuda de su concesionario autorizado para el servicio.

3

6. Este sistema ha sido calibrado para un óptimo funcionamiento.

1. Los usuarios y los operadores deben usar dispositivos y ropa de protección adecuados.

2. Mantenga distancia de las fuentes radiantes y todas las posibles zonas de radiación secundaria.

3. Eliminar los objetos innecesarios cerca de las zonas de exposición.

4. La distancia desde el centro de atención a la piel debe mantenerse por lo menos 8 pulgadas (20 cm).

5. Para usos experimentales, aplicar los valores más pequeños posibles de kV, mAs y el tiempo de exposición.

6. Tenga cuidado de no superar el numero limitado las radiografías en el área de exposición.

PRECAUCION

La radiación ionizante puede ser peligroso para los pacientes como a los operadores salvo que sigan las siguientes normas de seguridad y se observen estrictamente.

3. ENTORNO DE TRABAJO

Evitar los siguientes lugares para el funcionamiento normal y la seguridad del almacenamiento:

- a. Cuando el equipo está expuesto a vapor de agua.
- b. Cuando el equipo está expuesto a la luz directa del sol.
- c. Cuando el equipo está expuesto al polvo
- d. Cuando el equipo está expuesto a la humedad.
- e. Donde hay un problema de ventilación.
- f. Cuando el equipo está expuesto a un ambiente salado
- g. En el caso de que el equipo está expuesto a sustancias químicas o gases.

Para el funcionamiento seguro del equipo, debe ser mantenido lejos de lugares con fuertes vibraciones y mantener en un ambiente y condiciones propias.

Entorno de funcionamiento

Rango de temperatura	50°F ~ 104°F
Rango de humedad relativa	30% ~ 75% RH

Óptimo de temperatura y humedad

Rango de temperatura	62°F ~ 73°F
Rango de humedad relativa	40% ~ 60% RH

Para almacenamiento y transporte seguro, la siguiente gama de temperatura y humedad deben mantenerse.

Entorno de almacenamiento y transporte

Rango de temperatura	-13°F ~ +140°F
Rango de humedad relativa	10% ~ 95% RH

5

XVet 28 es un dispositivo radiológico para usos veterinarios. Debe ser aplicado para el diagnóstico radiológico y operado por profesionales calificados. Los usuarios tienen que cumplir con normas en materia de seguridad y salud relativas a la protección de las radiaciones ionizantes y la seguridad eléctrica y mecánica de los dispositivos médicos veterinarios.

PREPARACIÓN PARA LA OPERACIÓN

1. Prácticas de funcionamiento

a. Utilice un delantal de plomo mientras se realizan exposiciones.

b. Deje al menos 6,5 pies (2 m) de distancia de la unidad o extienda el cable de interruptor de mano en la medida de lo posible con el fin de garantizar suficiente espacio para su seguridad.

c. Use un adecuado tamaño de campo y valores técnicos en cada procedimiento para minimizar la dosis de exposición a los rayos x y obtener el mejor resultado radiográfico.

d. Cuando se realice la exposición al paciente en la cama, pida a los visitantes salir de la sala primero y mantenga una distancia adecuada del paciente.

- e. Preste atención a la programación de mantenimiento del dispositivo y manténgalo al día.
- f. La dosis de radiación acumulada no suele exceder los niveles máximos recomendados. Sin embargo, si usted realiza exposiciones radiográficas de alta kV y mAs a menudo, la evaluación del especialista es necesaria para comprobar si los dispositivos extra de protección son necesarios para que el usuario o no.
- 2. Posición del paciente contra el colimador
 - a) Coloque la cinta en la parte posterior del paciente.
 - b) Organizar el SID (Fuente de la imagen y Distancia del receptor) mediante una cinta métrica situado en el lateral del colimador.
 - c) Encienda la luz del colimador y puntero láser por el colimador láser está en posición de encendido.
 - d) Ajustar el tamaño del haz de rayos x de acuerdo con el tamaño de la película usando el campo de rayos x las perillas de ajuste. El colimador y puntero láser se desconecta después de 30 segundos de reloj interno.

Por favor, compruebe si el voltaje y la frecuencia de la potencia de entrada se encuentran en conformidad con las cifras escritas en las etiquetas de sistema, que están en el cuerpo de la máquina. El nivel de fluctuación de voltaje de entrada debe estar dentro de los valores nominales.

El funcionamiento de la máquina no debe iniciarse a menos que todas las verificaciones y las conexiones están completamente verificadas.

Para la primera instalación de la máquina o el funcionamiento después de un largo período de no utilización, se debe precalentar para asegurar una larga vida de servicio del tubo. El siguiente método de prueba piloto aliviará los daños en el tubo de rayos x. Operar el (máquina) con baja KV/valores de mAs (50KV/5 mAs) tres veces seguidas y ejecutar con valores altos (70KV/ 5mAs) tres veces seguidas de nuevo. A continuación aplicará en alto KV/valores de mAs (90kV/ 5mAs) y será aplicado sin problemas.

7. MODO DE FUNCIONAMIENTO

8.

No.	Descripción	Función
1	KV indicador	Display KV value
2	mAs indicador	Display mAs value
3	mAs & sec indicator	Display mAs & sec indicator
4	KV up/down control switch	Select KV value by up or down buttons
5	mAs up/down control switch	Select mAs value by up or down buttons
6	Ready indicator	Lighted push the hand switch one time for preparation
7	PC interface connecting indicator	Lighted when EPX series is connected to PC
8	Exposure indicator	Alert lamp during x-ray exposure
9	Error lamp	Lighted in case of system problem
10	Collimator lamp on	Switch for operation of the lamp inside the collimator
11	Laser pointer	To adjust exposure focus
12	Display reversal switch	Help to read LED value of kV, mAs reversed
13	mAs & sec select switch	The switch select between mAs and sec
14	Wait lamp	Lighted until the second exposure started
15	APR Switch (1-6)	Memory setting is available for 6 APR data
16	Save APR Data	Save the selected APR Data

8

- 1. Modo Normal
- a. Conectar cable de alimentación en el dispositivo.
- b. Encender el interruptor de la línea situada en la parte posterior del equipo.
- b. Seleccione el valor de KV mediante el interruptor de up/down.
- c. Seleccione los valores de mAs con el interruptor de up/down
- d. Colocar la máquina en el estado preparado pulsando el interruptor de mano una vez.

e. Cuando el "Listo" está iluminado, pulse el interruptor manual de nuevo y exponga. Durante la exposición a los rayos x, "X-ray LED" se encenderán

f. Después de la exposición, "wait LED" se encenderán en el tiempo de espera

2.- Modo APR

Conectar cable de alimentación en el dispositivo.

Encender el interruptor de la línea.

Seleccione el área de memoria de APR de 1 ~6.

Seleccione el valor de KV mediante el interruptor de up/down.

Seleccione los valores de mAs con el mAs up/down.

Guardar la selección de KV y mas figuras con el botón "save".

Cuando el "Ready LED" aparece encendido, pulse el interruptor manual y realizar la exposición. Durante la exposición a los rayos x, el "X-ray LED" se encenderán.

9

2. Después de la exposición, [5] "wait LED" se encenderán en el tiempo de espera.

ONTROLab. Alta Tecnología al Alcance de su Laboratorio

[TABLA 1. XVet 28]

Potencia de		2.8 KW					
Potencia de		2.0 KVV	2.8 κνν				
entrada	Voltaje	110 V-120V / 220V-240V					
	Fase y frecuencia	Single / 50/60 Hz					
		Tube voltage	current	mAs			
		40KV ~ 60KV	40mA	0.4 ~ 100			
		61KV ~ 70KV	30mA	0.4 ~ 64			
		61KV ~ 70KV	25mA	80 ~ 100			
		71KV ~ 80KV	35mA	0.4 ~ 10			
		71KV ~ 80KV	30mA	13 ~ 32			
		71KV ~ 80KV	25mA	40 ~ 80			
		81KV ~ 90KV	25mA	0.4 ~ 10			
Radiograph	ny kV Range in 1kV steps	81KV ~ 90KV	25mA	13 ~ 40			
		81KV ~ 90KV	20mA	50 ~ 80			
		91KV ~ 100KV	20mA	0.4 ~ 13			
		91KV ~ 100KV	20mA	16 ~ 50			
		91KV ~ 100KV	16mA	64 ~ 80			
		101KV ~ 110KV	18mA	0.4 ~ 32			
		101KV ~ 110KV	16mA	40 ~ 64			
		111KV ~ 120KV	16mA	0.4 ~ 20			
		111KV ~ 120KV	14mA	25 ~ 50			
MAs Range		0.4mAs – 100mAs, 25steps					
Max. kV Devi	ation	±3 %					
Max. mAs De	viation	±5 %	±5 %				
Display		KV /mAs: 7-segment LED					
	Model Name	D-125 TOSHIBA					
	Focal Spot	1.2mmx1.2mm					
X-ray Tube	Target Angle	16 degree					
	Anode Heat Storage	50 kHU					
	Heat Dissipation	350 HU/sec					
Total Filtration	<u></u> ו	2.5 mm Al eq. @ 120kV					
Min. X-ray Field Size Collimator Max X-ray Field Size with Laser Laser Pointer		≦5cm x 5cm @1	m SID				
		40cm x 40cm @	75cm SID				
		Class : IIIA 5mW					
Pointer	Timer	Push button illuminator with 30 sec timer					
	Lamp	12V 50W Halogen					
Weiaht		11.5 Kg					

•

Side view

8. TABLA TÉCNICA PARA PEQUEÑOS ANIMALES

100 cm (40 Inch) SID, GRID: 103 lines / 6:1 ratio Film/Screen: Fuji RX-U/ Rare earth

Espesor	Skull/Pelvis/Extreme KV	Thorax	Abdomen
(cm) /(mAs)		KV/ (mAs)	KV / (mAs)
2-3	No grid : 50 / (0.4)		
4-5	No grid : 54 / (0.4)		
6-7	No grid : 54 /(0.5)	No grid: 66 / (0.4)	No grid : 60 / (0.6)
8-9	No grid : 60 /(0.6)	No grid: 70 / (0.4)	No grid : 60 / (0.8)
10-11	66 / (1.6)	No grid: 74 / (0.4)	No grid : 60 / (1.0)
12-13	70 / (1.6)	78 / (0.8)	64 / (2.0)
14-15	72 / (1.6)	80 / (0.8)	68 / (2.5)
16-17	72 / (2.0)	86 / (0.8)	68 / (2.5)
18-19	74 / (2.4)	90 / (0.8)	70 / (3.2)
20-21	76 / (2.4)	90 / (1.2)	74 / (3.2)
22-23	80 / (2.4)	96 / (1.2)	80 / (4.0)

[TABLA 4. TABLA TÉCNICA PARA PEQUEÑOS ANIMALES]

* NOTA

El contenido de la tabla se recomienda las técnicas radiográficas de arranque.

La última radiografía de la densidad de la imagen y la resolución depende de muchos factores. Por favor, siga el siguiente ajuste y reglas comunes, si es necesario.

1. Agregar o restar 2 KV por cada 1 cm de aumento o disminución del grosor de la carrocería.

2. Si las películas son demasiado oscuras, reduzca el valor de mas valor a la siguiente estación inferior

3. Si las películas tienen demasiada luz, aumente el valor de mas valor a la próxima estación más alta

9. TABLA TECNICA EQUINA

26 Inch (66 cm) SID 400 Speed Rare Earth Film / Screen

[TABLA 5. TABLA EQUINA]

ANATOMY	ANATOMY VIEW		ontrast	Mid-Contrast		
		KV	mAs	KV	mAs	
NAVICULAR	AP	66	1.2	72	0.8	
	LAT	66	1.0	72	0.6	
	P3	62	0.8	-	-	
FETLOCK	AP	66	1.2	72	0.8	
	LAT	66	1.0	72	0.6	
KNEE	AP/FLEX	66	1.2	72	0.8	
	LAT/OBI	66	1.0	72	0.6	
SPLINT	LAT	58	0.8	68	0.6	
BONE						
НОСК	AP/HIGH	66	1.6	72	1.0	
	AP/LOW	66	1.2	72	0.8	
	LAT	66	1.0	72	0.6	
STIFLE	LAT	-		78	2.0	
	PA			78	4.0	
ELBOW	AP	-	·	78	2.0	
	OTHER			78	1.2	

13

[TABLA 6.TABALA EQUINA]

				ontrast
ANATOMY	VIEW DISTANCE		KV	mAs
	LAT	18 inch distance	78	1.2
	PA	18 inch distance	78	2.5
	AP	26 inch distance	68	2.5
INAVICULAR	LAT	26 inch distance	68	2.0
	FOAL	33 inch distance	90	0.8
CHEST	300LBS	33 inch distance	100	1.2
	500LBS	33 inch distance	100	4.0
SINUS	LAT	33 inch distance	88	1.2
	LAT	30 inch distance	86	3.2
	OBI	30 inch distance	86	4.0

Capítulo 1. Introducción

Este manual está diseñado para garantizar el correcto uso y funcionamiento del XVet modelo portátil de rayos x. Por favor, lea todas las líneas a fondo antes de utilizar el equipo.

Uso incorrecto funcionamiento superior y condiciones descritas en este manual puede causar daños de los equipos y reducir su tiempo de vida. Se debe prestar especial atención a todas las advertencias, precauciones y notas incluidas en el presente documento.

Este equipo debe ser utilizado solamente por las personas legalmente capacitadas y los profesionales.

En cuanto al cable de alimentación de CA y software, sólo los desarrollados y suministrados por KontroLab se deben utilizar.

Ninguna responsabilidad es tomada por KontroLab para cualquier infracción de los pacientes u otros derechos de los terceros que muchos de los resultados de la utilización de este manual.

Siempre mantenga el manual a mano para su consulta.

NOTA: Si es necesaria una calibración tras las inspecciones periódicas o reparaciones, por favor, tenga en cuenta las siguientes normas y métodos descritos en este manual.

PRECAUCION

La radiación ionizante es peligroso para el operador si las siguientes medidas

de seguridad no se observan estrictamente.

2-1. Diagrama de bloque del sistema

2-2 DISEÑO 2-2.1 Disposición del Panel de Control

2-2.2 Operation board top-side layout

2-2-3 Operation board bottom-side layout

Capítulo 3. Procedimiento de Operación

3-1 Interruptor de Línea de Poder

Interruptor de línea debe estar en posición de apagado. Conectar cable de alimentación a la toma de alimentación. Encender el interruptor de línea. Los LED del panel de control deben estar encendido.

3-2 Procedimiento de calibración

3-2.1 Confirmación de voltaje del tubo y calibración.

- a. Apague el interruptor de línea.
- b. Desprenda el panel de control de la unidad y acceda a PCB OP BOARD.
- c. Conecte el canal uno de la sonda del osciloscopio a TP8 (IP F/B).
- d. Conecte el canal dos de la sonda del osciloscopio a TP11 (EP F/B).

Canal 1 es para mA, y 40mA es igual a 6V Canal 2 es para KV, y 40KV es igual a 2V

- e. Conecte a tierra el TP12 or TP13 or TP14 (GND).
- f. Encienda el interruptor de linea y la pandalla mostrará lo siguiente:

- g. Ponga los kV y los mAs a 40KV y 0.4mAs(35mA), respectivamente.
 Observe la curva de KV del canal 2 del osciloscopio.
 Si no está a 2V, ajuste KV cambiando a VR3 en la tabla OP.
- h. Pogna los kV y los mAs a 100KV y 0.4mAs(20mA), respectivamente.
 Observa la curva de KV del canal 2 del osciloscopio.
 Si no está a 5V, ajuste KV cambiando a VR3 en la tabla OP.

20

3-2.2 Confirmación de corriente del tubo y calibración.

- a. Apague el interruptor de la línea
- b. Separar el panel de control de la unidad de acceso a la placa PCB OP.
- C. Conecte la sonda del canal uno (1) del osciloscopio en TP8 (IP F/B).

D. Conecte la sonda del canal dos (2) del osciloscopio en TP11 (EP F/B).

Canal 1 es para mA, y 40mA es igual a 6V Canal 2 es para KV, y 40KV es igual a 2V

E. Conecte a tierra de TP12 o TP13 o TP14 (GND)..

F. Encender el interruptor de línea y la pantalla debe indicar de la siguiente manera.

g. Establecer los valores de kV y mAs de 40 kV y 0,4 mAs(40mA),
respectivamente. A continuación, observe la curva de mA del canal 1 osciloscopio Si no es 6 V, ajuste mA utilizando los datos de la calibración de la OP
h. INTERRUPTOR DIP #4 en el OP PLACA PCB está en la posición on.
i. A continuación, la pantalla debe indicar de la siguiente manera,,

Donde, C00 ~C08 son código de calibración de corriente del tubo en AC110V modelo

Y C09 ~C17 son código de calibración de corriente del tubo en el modelo

AC220V. C00 es código de calibración de corriente del tubo (40mA a 40kV~

60kV) en el AC110V y 40,0 son los datos de calibración de corriente del tubo

(40mA a 40kV~ 60kV).

- j. Ajuste mA mediante el interruptor up/down (ver la hoja de operación).
- k. Una vez ajustado, presione el botón STORE (ver operación hoja).
- 1. INTERRUPTOR DIP #4 en el PCB OP JUNTA debe ajustarse a la posición de OFF y la exposición

de rayos X.

- m. Si no es 6V, establecer los datos de calibración nuevo.
- n. INTERRUPTOR DIP #4 en el OP PLACA PCB está en la posición on.

o. Ahora presione el interruptor kV UP (véase la hoja de operación). La pantalla debe indicar de la siguiente manera,

Donde, C01 es código de calibración de corriente del tubo (30mA a

61kV~ 70kV). y 30.0 es la calibración de corriente del tubo (30mA a

61kV~ 70kV).

s.

p. Ajuste mA mediante el interruptor UP/Down (ver operación hoja).

q. Una vez ajustado, presione el interruptor STORE (ver operación hoja).

r. INTERRUPTOR DIP #4 en el PCB OP BOARD está en la posición de "OFF" ahora hacer exposición.

Si no es 5.1V, establezca los datos de calibración de nuevo.

3-2.3 Calibración de precalentamiento

a. Este es el precalentamiento filamento de corriente del tubo.

b. Un alto o bajo disparo puede producirse a partir de la corriente del tubo si los datos de

calibración de precalentamiento se establece por error.

- c. Cambiar los datos de la calibración es posible, de conformidad con el tubo.
- d. Apague el interruptor de la línea
- e. Separar el panel de control de la unidad para acceder a la PCB OP.
- f. INTERRUPTOR DIP #4 en el PCB OP JUNTA está en la posición on.
- g. Encender el interruptor de la línea.

h. Empuje ABR S/W (1) y, a continuación, la pantalla debe indicar de la siguiente manera,

Donde, P00 ~P04 son código de calibración de filamento caliente corriente en AC110V, P05 ~P09 son código de calibración de filamento caliente corriente en AC220V, P00 es de precalentamiento Filamento código de calibración (precalentar código de calibración de 35 mA), y 1,30 es Filamento caliente datos de calibración (Precalentar los datos de calibración de 35 mA).

i. Ajustar los datos mediante el mas arriba-abajo del interruptor (véase la operación hoja).
 j. Una vez ajustado, presione el botón STORE (ver operación hoja).

k. INTERRUPTOR DIP #4 en el PCB OP JUNTA está en la posición de "OFF" a continuación, exponer de rayos X.

Si superación o subestimar se produce en la forma de onda, los datos de calibración.

A continuación, presione el interruptor DE KV (véase la operación hoja).

La pantalla debe indicar de la siguiente manera,

Donde, P01 es de precalentamiento Filamento código de calibración (precalentar código de calibración de 30mA) y 1.22 es Filamento caliente datos de calibración (Precalentar los datos de calibración de 30mA).

I. Ajustar los datos mediante el mas arriba-abajo del cuadro de mando.

m. Una vez ajustado, presione el interruptor Store (ver el funcionamiento hoja). n. INTERRUPTOR DIP #4 en el PCB OP JUNTA está en la posición de "OFF" después exponga los rayos x.

o. Si es excedido o no alcanza el disparo en la onda reinicie los datos de calibración.

3-2.4 DIP Switch setting

Los interruptores DIP son usados en los siguientes escenarios:

SW #1: ERROR Enable (ON)/Disable (OFF)

SW #2: Reservado

SW #3: Iniciar memoria (reservado)

SW #4: Modo de calibración (ON)/Modo Normal (Off)

Para operación normal solo el interruptor DIP SW#1 debe estar en ON.

3-3 Disco duro con cable de control interruptor

3-3.1 Introduccion

El interruptor manual de exposición consta de un interruptor de mano dos pasos. La primera (1) etapa de la mano de contacto se denomina "Preparación (Prep o LISTO)". La segunda (2) etapa de la mano de contacto se llama la "Exposición (Exp o X-Ray)".

3-3.2 Mano Diseño de switch

3-3.3 Proceso de exposición

hay dos formas de utilizar el interruptor manual para conseguir la exposición.

a. Presione y mantenga presionado el interruptor #1 durante más de 1 segundo, que obtiene la "Preparación o estado de listo" y, a continuación, pulse el interruptor #2 para obtener la "exposición".

 b. Presione y mantenga presionado el interruptor 1 Interruptor 2 y simultáneamente durante más de 1 segundo. Esta acción tendrá como resultado en la sección "Preparación o Listo" y "exposición" al mismo tiempo.

3-5 Colimador

3-5.1 Especificación

a. Lámpara halógena * 1

b. Puntero láser * 1

c. Horizontal y vertical de control de iluminación

3-5.2 diagrama de bloque

3-5.3 Diseño

a. Diseño externo

b. Diseño interno

c. Presentación

Horizontal adjust limit

2.4kW mA Control Table									
Tube Current Parameter		Tube Voltage	m	As	Sense R	Tube Current	INPUT DATA	TP8 (IP F/B)	
AC110V	AC220V	KV	MIN	MAX	Ω	mA	mA	V	
C00	C09	40~60	0.4	100	150	40.0	40.0	6.00	
C01	C10	61~70(1)	0.4	64	150	30.0	30.0	5.14	
C02	C11	61~70(2)	80	100	150	25.0	25.0	4.29	
C03	C12	71~80(1)	0.4	32	150	30.0	30.0	5.14	
C04	C13	71~80(2)	40	80	150	25.0	25.0	4.29	
C05	C14	81~90(1)	0.4	40	150	25.0	25.0	4.29	
C06	C15	81~90(2)	50	80	150	20.0	20.0	3.43	
C07	C16	91~100(1)	0.4	50	150	20.0	20.0	3.43	
C08	C17	91~100(2)	64	80	150	16.0	16.0	2.74	

2.8kW mA Control Table									
Tube Current			5	۸.	Sonco P	Tubo Current			
Parameter		Tube Voltage		A 5	Sense R	Tube Current	INFOI DATA		
AC110V	AC220V	KV	MIN	MAX	Ω	mA	mA	V	
C00	C16	40~60	0.4	100	171.4	35.0	35.0	6.00	
C01	C17	61~70(1)	0.4	64	171.4	30.0	30.0	5.14	
C02	C18	61~70(2)	80	100	171.4	25.0	25.0	4.29	
C03	C19	71~80(1)	0.4	10	171.4	35.0	35.0	6.00	
C04	C20	71~80(2)	13	32	171.4	30.0	30.0	5.14	

C05	C21	71~80(3)	40	80	171.4	25.0	25.0	4.29
C06	C22	81~90(1)	0.4	10	171.4	30.0	30.0	5.14
C07	C23	81~90(2)	13	40	171.4	25.0	25.0	4.29
C08	C24	81~90(3)	50	80	171.4	20.0	20.0	3.43
C09	C25	91~100(1)	0.4	13	171.4	25.0	25.0	4.29
C10	C26	91~100(2)	16	50	171.4	20.0	20.0	3.43
C11	C27	91~100(3)	64	80	171.4	16.0	16.0	2.74
C12	C28	101~110(1)	0.4	32	171.4	18.0	18.0	3.09
C13	C29	101~110(2)	40	64	171.4	16.0	16.0	2.74
C14	C30	111~120(1)	0.4	20	171.4	16.0	16.0	2.74
C15	C31	111~120(2)	25	50	171.4	14.0	14.0	2.40

3.2kW mA Control Table								
Tube Current Parameter		Tube Voltage	mAs		Sense R	Tube Current	INPUT DATA	TP8 (IP F/B)
AC110V	AC220V	KV	MIN	MAX	Ω	mA	mA	V
C00	C08	40~50	0.4	100	100.0	60.0	60.0	6.00
C01	C09	51~60	0.4	80	100.0	50.0	50.0	5.00
C02	C10	61~70	0.4	100	100.0	40.0	40.0	4.00
C03	C11	71~80(1)	0.4	32	100.0	40.0	40.0	4.00
C04	C12	71~80(2)	40	80	100.0	35.0	35.0	3.50
C05	C13	81~90(1)	0.4	80	100.0	30.0	30.0	3.00
C06	C14	91~100(1)	0.4	50	100.0	30.0	30.0	3.00
C07	C15	91~100(2)	64	80	100.0	25.0	25.0	2.50
		•						

Appendix-2. Código y datos de calibración de Precalentamiento de Filamento

Model	Current(mA)	P_Mode(110V)	P_Mode(220V)	DATA(A)
	35	P00	P07	1.30
	30	P01	P08	1.22
	25	P02	P09	1.18
2.8kW	20	P03	P10	1.10
	18	P04	P11	1.06
	16	P05	P12	1.06
	14	P06	P13	1.06
	40	P00	P05	1.30
	30	P01	P06	1.22
2.4kW	25	P02	P07	1.18
	20	P03	P08	1.10
	16	P04	P09	1.06
	60	P00	P06	3.89
	50	P01	P07	3.81
	40	P02	P08	3.69
3.2kW	35	P03	P09	3.65
	30	P04	P10	3.52
	25	P05	P11	3.49

42

Model	Tube Voltage	Tube Current	Exposure Time				Watt	
	kV	Current(mA)	mAs (min)	mAs (max)	Time (ms/min)	Time (ms/max)	W (min)	W (max)
	40~50	35	0.4	100	11.4	2857.1	1400	1750
	51~60	35	0.4	100	11.4	2857.1	1750	2100
	61~70(1)	30	0.4	64	13.3	2133.3	1800	2100
	61~70(2)	25	80	100	3200.0	4000.0	1500	1750
	71~80(1)	35	0.4	10	11.4	285.7	2450	2800
	71~80(2)	30	13	32	433.3	1066.7	2100	2400
	71~80(3)	25	40	80	1600.0	3200.0	1750	2000
2.8kW	81~90(1)	30	0.4	10	13.3	333.3	2400	2700
	81~90(2)	25	13	40	520.0	1600.0	2000	2250
	81~90(3)	20	50	80	2500.0	4000.0	1600	1800
	91~100(1)	25	0.4	13	16.0	520.0	2250	2500
	91~100(2)	20	16	50	800.0	2500.0	1800	2000
	91~100(3)	16	64	80	4000.0	5000.0	1440	1600
	101~110(1)	18	0.4	32	22.2	1777.8	1800	1980
	101~110(2)	16	40	64	2500.0	4000.0	1600	1760
	111~120(1)	16	0.4	20	25.0	1250.0	1760	1920
	111~120(2)	14	25	50	1785.7	3571.4	1540	1680

	40~50	40	0.4	100	11.4	2857.1	1600	2000
	51~60	40	0.4	100	11.4	2857.1	2040	2400
	61~70(1)	30	0.4	64	13.3	2133.3	1800	2100
	61~70(2)	25	80	100	3200.0	4000.0	1500	1750
	71~80(1)	30	0.4	32	13.3	1066.7	2100	2400
2.4KVV	71~80(2)	25	40	80	1600.0	3200.0	1750	2000
	81~90(1)	25	0.4	40	16.0	1600.0	2000	2250
	81~90(2)	20	50	80	2500.0	4000.0	1600	1800
	91~100(1)	20	0.4	50	20.0	2500.0	1800	2000
	91~100(2)	16	64	80	4000.0	5000.0	1440	1600
	40~50	60	0.4	100	6.7	1666.7	2400	3000
	51~60	50	0.4	80	8.0	1600.0	2550	3000
	61~70	40	0.4	100	10.0	2500.0	2440	2800
2 21-14	71~80(1)	40	0.4	32	10.0	800.0	2840	3200
3.2KVV	71~80(2)	35	40	80	1142.9	2285.7	2485	2800
	81~90(1)	30	0.4	80	13.3	2666.7	2430	2700
	91~100(1)	30	0.4	50	13.3	1666.7	2730	3000
	91~100(2)	25	64	80	2560.0	3200.0	2275	2500

Appendix-4 Tabla de errores

	ERROR		
No.	Código	Descripción	Indicación
1	002	THERMAL ERR(INTERLOCK)	Excess from 60°C
2	010	standby FIL FB ERROR	Excess from 200mA (10% of max. current, 2A)
3	011	standby EP FB ERROR	Excess from 12KV (10% of max. voltage, 120KV)
4	012	standby IP FB ERROR	Excess from 3.5mA (10% of MAX current, 35mA)
5	014	run FIL FB ERR	Out of range from reference±10%
6	018	run IP FB LOW ERR	Out of range from reference-10%
7	016	run IP FB HIGH ERR	Out of range from reference+10%
8	015	run EP FB or AC POWER LOW ERR	Out of range from reference-10% or AC power line poor
9	017	run EP FB HIGH ERR	Out of range from reference+10%
10	007	READY SW ERR	READY switch malfunction
11	008	EXPOSURE SW ERR	EXPOSURE switch malfunction

